
SNM: Stochastic Newton Method for Optimization
of Discrete Choice Models

Gael Lederrey
Transport and Mobility Laboratory

École Polytechnique Fédérale de Lausanne
Station 18, CH-1015 Lausanne
gael.lederrey@epfl.ch

Virginie Lurkin
Transport and Mobility Laboratory

École Polytechnique Fédérale de Lausanne
Station 18, CH-1015 Lausanne
virginie.lurkin@epfl.ch

Michel Bierlaire
Transport and Mobility Laboratory

École Polytechnique Fédérale de Lausanne
Station 18, CH-1015 Lausanne

michel.bierlaire@epfl.ch

Abstract—Optimization algorithms are rarely mentioned in the
discrete choice literature. One reason may be that classic Newton-
Raphson methods have been rather successful in estimating
discrete choice parameters on available data sets of limited
size. However, thanks to recent advances in data collection,
abundant data about choice situations become more and more
available, and state-of-the-art algorithms can be computationally
burdensome on these massive datasets. In this paper, inspired
by the good practices from the machine learning field, we
introduce a Stochastic Newton Method (SNM) for the estimation
of discrete choice models parameters. Our preliminary results
indicate that our method outperforms (stochastic) first-order and
quasi-newton methods.

Index Terms—Discrete Choice Models, Optimization

I. INTRODUCTION

Discrete choice models (DCM) have become an essential
operational tool in modeling individual behavior. Many suc-
cess stories have been reported in the scientific studies in
transportation, marketing, health, or economics, among others.
Estimating the parameters of those models requires to solve
an optimization problem and yet, optimization algorithms
are rarely mentioned in the discrete choice literature. One
reason may be that classic nonlinear optimization algorithms
(i.e., Newton-Raphson method) have been rather successful in
estimating discrete choice parameters on available data sets
of limited size. Thanks to recent advances in data collection,
abundant data about choice situations become more and more
available. While offering a rich potential for a better under-
standing of human choices, these new data sources also bring
new challenges for the community. Indeed algorithms classi-
cally embedded in state-of-the-art discrete choice software’s
(such as Biogeme [1] or Larch [2]) can be computationally
burdensome on these massive datasets.

In contrast, extracting useful information from big data sets
is at the core of Machine Learning (ML). Primarily interested
in achieving high prediction accuracy, ML algorithms (and
especially Neural Networks) have proved to be successful
on models involving a huge number of parameters. Thus,
large-scale machine learning models often involve both large
volumes of parameters and large datasets. As such, first-order
stochastic methods are a natural choice for large-scale machine
learning optimization. Due to the high cost of computing
the full-Hessian, the second-order methods have been much

less explored. And yet, algorithms exploiting second-order
information can provide faster convergence.

For the sake of interpretability, discrete choice models
usually have a more restricted set of parameters than models
typically investigated in the ML community. We, therefore,
argue that it is possible to use second-order information to
estimate these models. In this paper, inspired by the good prac-
tices and the intensive use of stochastic gradient methods in the
ML field, we introduce a Stochastic Newton Method (SNM)
for the estimation of discrete choice models parameters. The
objective of this paper is to investigate the convergence of
our algorithm by benchmarking it against standard first-order
methods and quasi-newton methods using a simple logit model
on a small dataset. We present preliminary results that indicate
that our method outperforms (stochastic) first-order and quasi-
newton methods. It constitutes a first step toward our final goal
that is the development of an optimization method specifically
designed to estimate discrete choice model parameters on big
data sets.

The remainder of this paper is structured as follows. In
section II, we present some related works about first and
second-order optimization methods. In Section III, we describe
the Stochastic Newton Method (SNM) algorithm that we
propose. In Section IV we describe the discrete choice model
we use, as well as the first-order methods and quasi-newton
methods that we use as a benchmark to evaluate our algorithm.
Section V shows the results and we present our concluding
remarks and future works in section VI.

II. RELATED WORK

Optimization plays a crucial role in Machine Learning,
especially for developing efficient and scalable algorithms
suited for large datasets and complex models. In this respect,
first-order methods have been extensively explored, leading
to many variants of the popular Stochastic Gradient Descent
(SGD) algorithm. A well-known issue of standard first-order
methods is that they tend to struggle when the curvature of
the objective function is not homogeneous [3].

To remedy this situation, a momentum term is usually
introduced in SGD algorithms (see [4]). Momentum-based
methods help accelerate gradients vectors in the right direc-
tions, leading to faster convergence. Other kinds of techniques

such as preconditioning can be used to solve this particular
problem. Other first-order methods adapt the step size (or
learning rate) to the parameters, such as Adagrad [5]. Adding
a momentum and adapting the learning rate are probably the
two most popular extension of the classical SGD algorithm.
Then comes an iterative process between researchers trying to
improve previous algorithms. Ruder [6] gives a good overview
of first-order methods, from SGD up to complex and recent
first-order algorithms such as Nadam [7] or AMSGrad [8].

More recently, thanks to the growth in computing power,
researchers went beyond the first-order methods to consider
quasi-newton methods that collect information about the cur-
vature. The key motivation is to benefit from Newton’s method
speed without having to compute the exact second derivatives
at each iteration. The central idea is, therefore, to build up,
iteratively, an approximation of the Hessian matrix from the
function and gradient values computed at previous step(s).

Much progress has been made lately toward developing
Stochastic BFGS algorithms such as RES-BFGS [9], a reg-
ularized stochastic BFGS. Nowadays, several researchers are
trying to make use of the structure of the problem to find
alternative versions of a given algorithm to perform better on
this specific problem. For example, Gower et al. [10] have im-
plemented an alternative version of BFGS for matrix inversion.
Keskar et al. [11] have implemented adaQN, an adaptative
quasi-newton method that is specifically designed for training
Recurrent Neural Networks. Some researchers, such as Ye and
Zhang [12], have got inspiration from the progress on first-
order methods to improve second-order methods and Byrd et
al. [13] have proposed to make use of conjugate gradient and
stochasticity to create more efficient algorithms. In definitive,
the most advanced and recent methods are all based on quasi-
newton methods (see e.g. [14–17]), while little work has been
done regarding the second-order methods.

III. STOCHASTIC NEWTON METHOD (SNM)

The central idea behind our algorithm is to compute a
stochastic Hessian instead of a full Hessian, i.e. use all ob-
servations to compute the Hessian. Indeed, consider a Choice
model P(i|xn, β, Cn) that gives the probability that individual
n chosses alternative i within choice set Cn, given the values
of the features xn, and the parameters β. Now, consider a
sample of individuals. For each individual n in the sample,
the following data is available:

• The set Cn of available alternatives.
• The observed choice, characterized by the vector yn,

whose elements are defined as yin = 1 if individual n has
been observed to choose alternative i, and 0 otherwise.
Note that

∑
i yin = 1, ∀n.

• The vector of features xn.

The log likelihood of the sample is a function of the unknown
parameters β defined as

L(β) =
∑
n

∑
i

yin logP(i|xn, β, Cn) (1)

The estimation of the β parameters amounts to solve the
following optimization problem

max
β
L(β) (2)

The structure of the objective function, in Equation (1), as
a sum over entries in the database suggests the use of a
stochastic approach.

We now present our algorithm named Stochastic Newton
Method (SNM)1. The input parameters are the following:
• β0: Initial parameters. They are used to start the opti-

mization process.
• D: Data. For the Python implementation, we use a
pandas.DataFrame.

• f : Objective function. It corresponds to the log likelihood
in Equation (1). It is a function that takes the parameters
β and the data D and returns the function value.

• ∇f : Gradient of the objective function. It takes the
parameters β and the data D and returns the gradient of
f . This function has to work with batches, meaning that
an additional parameter for the batch has to be provided.

• ∇2f : Hessian of the objective function. It takes the
parameters β and the data D and returns the Hessian of
f . This function has to work with batches, meaning that
an additional parameter for the batch has to be provided.

• Nep: Maximum number of epochs. In our case, it is the
only stopping criterion.

• Nbatch: Batch size. It is used to compute the stochastic
Hessian and stochastic gradient on Nbatch samples.

As outputs, SNM returns the epochs E, i.e. the steps, the
parameters, β, for all epochs, and the objective function values,
fv , for all epochs.

The beginning of SNM is similar to all first-order stochastic
algorithms. The number of samples ND and the number of
parameters M have to be retrieved from the data or given as
parameters. Then, we can compute the number of iterations
Niter based on the maximum number of epochs Nep, the
number of samples ND, and the number of batches Nbatch
with the following formula:

Niter = dNepND/Nbatche

After the initialization of the output parameters, we can start
the for loop on the iterations. We first fill the outputs with the
current epoch and the current function value. The next step,
on line 8, is to get the batch for the stochastic components of
this algorithm. To achieve this, we draw Nbatch indices from
a uniform distribution U(0, ND) without replacement. Then,
on lines 9 and 10, we compute the stochastic gradient and
the stochastic Hessian with the current parameters, denoted
∇fidx(β[i]) and∇2fidx(β[i]), respectively. The next step is to
decide whether we should do a gradient step or a Newton step.
We do this by looking at the Hessian. Since we are trying to
maximize the value of the log likelihood, we can do a Newton

1The code is available on GitHub: https://github.com/glederrey/IEEE2018-
SNM

https://github.com/glederrey/IEEE2018-SNM
https://github.com/glederrey/IEEE2018-SNM

step if and only if the Hessian is negative definite. We can then
obtain the Newton step by solving the following system

∇2f(β) · p = −∇f(β)

Where p is the step direction we are looking for, ∇f is the
gradient of the function f , and ∇2f is the Hessian of the same
function f . If the Hessian is not negative definite, meaning
that one of its eigenvalues is either 0 or positive, we cannot
perform a Newton step. Thus, we can simply do a gradient
step. In this case, the direction is given by the gradient itself.
The next important step is to find a good step size, see line
15. We do this using a backtracking Line Search method using
the Armijo-Goldstein condition [18]. The algorithm starts with
α > 0 being the maximum candidate step size. In addition, we
use two search control parameters τ ∈ (0, 1) and c ∈ (0, 1).
In our case, α = 1 and τ = c = 0.5. Then, we can set
t = −c · pT∇f(β). The core loop goes as follows: until the
condition f(β) − f(β + αp) ≥ αt is satisfied, set α = τ · α.
Once the condition is reached, we can simply return α. In our
implementation, we also added a stopping criterion to avoid
being caught in an infinite loop. Indeed, we stop the back-
tracking line search if α < 10−8. Such a line search method
is helpful to do the biggest possible step. However, it does
not help when the problem is ill-conditioned. Indeed, if one
of the parameters requires a tiny step size to perform a correct
iteration (the next objective function value is smaller/greater
than the previous one), the backtracking line search will reduce
the step size significantly. Therefore, the parameters requiring
a large step size, because they have a large optimized value,
will not be properly optimized. However, the direction step
itself can have different values for the parameters. Thus, a
good step can help with ill-conditioned problems.

IV. CASE STUDY

We use the Swissmetro dataset [19] and build a logit model
denoted by M:

VCar = ASCCar + βTT,CarTTCar + βC,CarCCar + βSenior1Senior

VSM = ASCSM + βTT,SMTTSM + βC,SMCSM

+ βHEHESM + βSenior1Senior
(3)

VTrain = ASCTrain + βTT,TrainTTTrain + βC,TrainCTrain + βHEHETrain

where 1Senior is a feature equal to one if the age of the
respondent is over 65 years olds, 0 otherwise, C denotes the
cost, TT the travel time, and HE the headway for the train and
Swissmetro. For this model, we removed all observations with
unknown choice, unkown age and non-positive travel time.
This gives a total of 9,036 observations.

We first estimate the model with Biogeme [1] to obtain the
optimal parameter values and verify that all parameters are
significant. However, we do not use the usual log likelihood.
Instead, we are using a normalized log likelihood which
corresponds to the log likelihood divided by the number of
observations. Therefore, the final normalized log likelihood is
−0.7908. The optimized parameters are given in Table I.

Value Std err t-test p-value
ASCCar 0 - - -
ASCSM 7.86 · 10−1 6.93 · 10−2 11.35 0.00
ASCTrain 9.83 · 10−1 1.31 · 10−1 7.48 0.00
βTT,Car −1.05 · 10−2 7.89 · 10−4 -8.32 0.00
βTT,SM −1.44 · 10−2 6.36 · 10−4 -21.29 0.00
βTT,Train −1.80 · 10−2 8.65 · 10−4 -20.78 0.00
βC,Car −6.56 · 10−3 7.89 · 10−4 -8.32 0.00
βC,SM −8.00 · 10−3 3.76 · 10−4 -21.29 0.00
βC,Train −1.46 · 10−2 9.65 · 10−4 -15.09 0.00
βSenior -1.06 1.16 · 10−1 -9.11 0.00
βHE −6.88 · 10−3 1.03 · 10−3 -6.69 0.00

TABLE I
PARAMETERS OF THE OPTIMIZED MODELM BY BIOGEME.

We also provide a normalized model M̄ where the values
of travel time, cost, and headway have been divided by 100.
The parameters for this normalized model are the same as
model M except that the values of the parameters associated
with the features normalized are multiplied by 100. The
reason behind this normalization is to obtain parameters in
the same order of magnitude.

A. Benchmark algorithms

We use several algorithms to train models M and M̄.
These algorithms fall into three different categories: first-order
methods, second-order methods, and quasi-newton methods.
For first-order methods, we use mini-batch SGD [6] and
Adagrad [5]. For the quasi-newton methods, we use BFGS
algorithm [20] and RES-BFGS [9]. The main second-order
algorithm is the Newton method [21]. Finally, to avoid
the long and tedious search of a good step size, we run
all algorithms presented above with the backtracking Line
Search method using the Armijo-Goldstein condition [18] as
explained at the end of Section III.

V. RESULTS

A. Raw data vs Normalized data

First, we want to investigate the effect of the ill-conditioned
problems on SNM and other benchmark algorithms. Indeed,
it is well known that first-order methods tend to suffer from
ill-conditioned problems while second-order methods, with the
information on the curvature from the Hessian, can better deal
with it. Figure 1(a) and 1(b) show the optimization process
of the log likelihood for SGD and Adagrad, respectively, for
the raw model M and the normalized model M̄. For both
algorithms, the optimization was done ten times for ten epochs
with a batch size of 100 observations. The lines correspond to
the average while the colored part corresponds to the 95%
confidence interval. The results show that these algorithms
perform better on the normalized model M̄. Table II shows
the average value of the log likelihood after two epochs for
these two algorithms on both models.

Figure 1(c) shows the results of the training on both models
with SNM. We ran this algorithm with batches of 1,000
observations. Table II shows the value of the normalized log-
likelihood on the ill-conditioned model M and the normal-
ized model M̄. Both the results from Figure 1 and Table

Algorithm 1 Stochastic Newton Method (SNM)
Input: Starting parameter value (β0), data (D), function (f), gradient (∇f), Hessian (∇2f), number of epochs (Nep), batch

size (Nbatch)
Output: Epochs (E), parameters (β), function values (fv)

1: function SNM
2: (ND,M) = |D| . Number of samples and parameters
3: Niter ← dNepND/Nbatche . Number of iterations
4: Initialize E, β and fv . Set β[0]← β0
5: for i = 0 . . . Niter do
6: E[i]← i ·Nbatch/ND . Store the epoch
7: fv[i]← f(β[i]) . Store the function value
8: idx ← Nbatch indices from U(0, ND) without replacement
9: grad ← ∇fidx(β[i]) . Gradient on the samples from idx

10: hess ← ∇2fidx(β[i]) . Hessian on the samples from idx
11: if hess is negative definite then
12: Solve hess · step = −grad to get step . Newton step
13: else
14: step ← grad . Gradient step
15: α← Backtracking Line Search with step on the subset of data with indices from idx
16: β[i+ 1]← β[i] + α · step
17: E[niter]← Niter ·Nbatch/ND
18: fv[Niter]← f(θ[Niter])
19: return E, β and fv

0 2 4 6 8 10

Epoch

−1.1

−1.0

−0.9

−0.8

N
or

m
al

iz
ed

lo
g-

lik
el

ih
o

o
d

(L̄
)

Optimal log-likelihood

Normalized data (model M̄)

Raw data (model M)

(a) SGD

0 2 4 6 8 10

Epoch

−1.1

−1.0

−0.9

−0.8

N
or

m
al

iz
ed

lo
g-

lik
el

ih
o

o
d

(L̄
)

Optimal log-likelihood

Normalized data (model M̄)

Raw data (model M)

(b) Adagrad

0 2 4 6 8 10

Epoch

−1.1

−1.0

−0.9

−0.8

N
or

m
al

iz
ed

lo
g-

lik
el

ih
o

o
d

(L̄
)

Optimal log-likelihood

Normalized data (model M̄)

Raw data (model M)

(c) SNM

Fig. 1. Evaluation of the algorithms on raw data (modelM) and normalized data (model M̄). The vertical axis corresponds to the normalized log likelihood.
Each time, ten runs have been executed. The lines correspond to the average value over all the runs, and the colored part corresponds to the 95% confidence
interval. SGD and Adagrad are run with a batch size of 100 observations, SNM is run with a batch size of 1,000 observations.

II show that second-order methods have less problem with
ill-conditioned optimization problem. Thus, it indicates that
the information contained in the Hessian is important when
the problem is ill-conditioned. Besides, we see that using a
stochastic Hessian does not hurt the second-order methods
when dealing with ill-conditioned problems.

B. Comparison of the algorithms

At this point, we are interested in benchmarking the per-
formance of SNM compared to other methods. The most used
methods in the literature are the first-order methods and quasi-
newton methods. Thus, comparing the optimization process of
SNM against such methods can give us a good insight about
the performance of our algorithm. Therefore, we first train
SGD with different batch sizes, as well as gradient descent.
The results are given in Figure 2(a). We do the same for
standard BFGS and RES-BFGS with batch sizes of 100 and
1,000. The results are given in Figure 2(b). Finally, we show
the results for SNM. We trained it with two different batch

sizes, 100 and 1,000, and we compare it against Newton
method. The results are given in Figure 2(c). For these three
figures, we executed ten runs. Again, the lines give the average
value for the normalized log likelihood, and the colored parts
show the 95% confidence interval.

From Figure 2, we see that first-order methods struggle the
most in the early epochs. Then, we see that stochastic quasi-
newton methods tend to struggle to reach the optimal value,
especially with the first approximation of the Hessian being
the identity matrix. Interestingly, we see that the RES-BFGS
works better with smaller batch size while it tends to struggle
and plateau with big batch size. Nevertheless, it can get closer

SGD Adagrad SNM
on M -0.808608 -0.813525 -0.793933
on M̄ -0.797970 -0.801471 -0.793933
rel. diff. 1.33% 1.50% 0.00%

TABLE II
AVERAGE NORMALIZED LOG LIKELIHOOD OVER A THOUSAND RUNS AT

THE TENTH EPOCH FOR SGD, ADAGRAD, AND SNM.

0 2 4 6 8 10

Epoch

−1.1

−1.0

−0.9

−0.8
N

or
m

al
iz

ed
lo

g-
lik

el
ih

o
o

d
(L̄

)

Optimal log-likelihood

Gradient Descent

SGD (batch size: 100)

SGD (batch size: 1000)

(a) First-order methods

0 2 4 6 8 10

Epoch

−1.1

−1.0

−0.9

−0.8

N
or

m
al

iz
ed

lo
g-

lik
el

ih
o

o
d

(L̄
)

Optimal log-likelihood

BFGS (Identity start)

BFGS (Hessian start)

RES-BFGS (batch size: 100)

RES-BFGS (batch size: 1000)

(b) Quasi-Newton methods

0 2 4 6 8 10

Epoch

−1.1

−1.0

−0.9

−0.8

N
or

m
al

iz
ed

lo
g-

lik
el

ih
o

o
d

(L̄
)

Optimal log-likelihood

Newton Method

SNM (batch size: 100)

SNM (batch size: 1000)

(c) Second-order methods

Fig. 2. Comparison of the different algorithms presented in Section IV-A and III. The vertical axis corresponds to the normalized log likelihood. Each time,
ten runs have been executed. The lines correspond to the average value over all the runs, and the colored part corresponds to the 95% confidence interval.

batch first-order quasi-newton second-order

Stochastic 100 -0.797970 -0.791851 -0.825096
1000 -0.794238 -0.797552 -0.793933

Full batch size -0.821341 -0.845372/-0.790806 -0.790806
TABLE III

AVERAGE NORMALIZED LOG LIKELIHOOD OVER A THOUSAND RUNS AT
THE TENTH EPOCH FOR FIRST-ORDER METHODS, QUASI-NEWTON

METHODS, AND SECOND-ORDER METHODS.

to the optimal solution than SGD. However, SNM is the best
algorithm out of the three regarding the log likelihood at the
tenth epoch. Table III gives the average value of the normalized
log likelihood for the tenth epoch. In this table, we report
two values for the quasi-newton method and the full batch
size: the first value reported is with the first approximation
of the Hessian being the identity matrix, the second value
corresponds to the real Hessian. The numbers confirm that
SNM is the best algorithm. However, it is interesting to note
that contrary to the other two algorithms, SNM runs better
with bigger batch size. In the next section, see Section V-C,
we study the possible reason behind such behavior.

C. Effect of the batch size

As shown in Table III, for both SGD and SNM a more
significant batch size works better than a smaller one. In this
section, we are particularly interested about SNM, but the
conclusion also holds for SGD. Firstly, we might think that
it is because of constant switching between Newton step and
gradient descent step. Indeed, the choice of the direction in
the algorithm exploits the second-order information only if the
batch hessian is positive (negative, if you maximize) definite.
Thus, the larger the batch size, the higher the probability that
it is the case. In Figure 3, we show the percentage of Newton
steps that the algorithm is performing as a function of the
batch size. This percentage is computed on a thousand draws.

As we can see, SNM tends to perform only Newton steps
quickly. Indeed, with a batch of 100 observations, the algo-
rithm performs a Newton step 99.9% of the time. Therefore,
the difference in the percentage of Newton steps between
batches of 100 observations and batches of 1,000 observations
is minimal. It leads to the conclusion that the issue aforemen-
tioned does not come from the switching between the two
types of steps.

However, small batch sizes create other issues for all sorts
of stochastic algorithms. Indeed, when computing the Hessian

0 25 50 75 100 125 150 175 200

Batch size

20

40

60

80

100

P
er

ce
nt

ag
e

of
N

ew
to

n
st

ep

Fig. 3. Theoretical percentage of Newton step in function of the batch size
for model M̄. The percentage was computed on a thousand draws.

50 100 500 1000

Batch size

−1

0

1

2

3

4

5
E

uc
lid

ia
n

di
st

an
ce

(l
og

10
)

Fig. 4. Euclidian distance between the optimal parameters obtained on the
full dataset and optimal parameters found on batches of the data for different
batch sizes. The line in the middle represents the median. A thousand draws
were computed for each batch size.

with small batch size, the only information we get is from a
small subset of data. Therefore, for a given batch, the optimum
can be different from the optimum on the whole dataset. Using
the well optimized function minimize from the package
scipy.optimize, we compute the optimum for different
batch size. Then, we compare the euclidian distance between
the optimum on the full dataset and the optimum from the
different batches. Figure 4 shows the results of this experiment.

In Figure 4, we see that when taking small batches, the
optimal solution is pretty far from the optimal solution on
all data points. Therefore, this creates a problem in the
computation of the step for SNM. Indeed, since we do not
take into account previous Hessian, as opposed to RES-BFGS,
the algorithm will often change direction with small batches.
Indeed, every time we change the batch, the algorithm is
chasing a different optimum, making difficult for it to achieve
the real optimum.

Thus, one way to fix this kind of problem is to use variance-
reduction techniques as done by the first-order method named

SAG [22]. Indeed, it would be interesting to accumulate
second-order information from different batches in a pre-
conditioning matrix. Such a matrix is more likely to be positive
(negative for maximization) definite (we can enforce it if
needed), and then used it to solve Newton’s equations.

VI. CONCLUSION

In this paper, we have presented a second-order stochastic
method called SNM. Just as SGD methods, the central idea
is to compute the Hessian on a batch of observations. While
not possible for machine learning algorithms that are gener-
ally used for the estimation of models including millions of
parameters, we hypothesize that it is possible and desirable
to include second-order information for estimating discrete
choice models that generally contain no more than a dozen pa-
rameters. We showed that a second-order stochastic approach
was legit thanks to the finite-sum shape of the log likelihood.
We compared our algorithm with several first-order and quasi-
newton benchmark algorithms using a simple discrete choice
model. Preliminary results have revealed that (stochastic) first-
order methods encounter issues in estimating the parameters
of such models and that our algorithm was achieving better
performances.

Although preliminary results showed in this paper are
encouraging, the current state of the algorithm only constitutes
a first step toward our final goal that is the development of an
optimization method specifically designed to estimate discrete
choice model parameters on big data sets. The obvious next
step is to use a more sophisticated way to calculate a pre-
conditioning matrix using batch second order information.
Also, the calculation of the step should be improved. Then,
the theoretical properties of our approach need to be studied
as the convergence rate of our algorithm is still unknown.
Our algorithm will also have to be tested on more advanced
discrete choice models (such as Nested Logit and Cross-
Nested Logit models) and on much larger datasets. Regarding
this latter, data sets including individuals’ behavior over time
have become increasingly available, and our approach seems
to be particularly well suited for such data. Investigating the
potential of our algorithm on panel data is therefore also an
exciting avenue of future research.

VII. ACKNOWLEDGEMENTS

We would like to thank Tim Hillel for his valuable insight
on the development of this method as well as his comments
that significantly improved this article.

REFERENCES

[1] M. Bierlaire, “BIOGEME: a free package for the estimation of discrete
choice models,” Swiss Transport Research Conference 2003, Mar. 2003.
[Online]. Available: https://infoscience.epfl.ch/record/117133

[2] J. P. Newman, V. Lurkin, and L. A. Garrow, “Computational
methods for estimating multinomial, nested, and cross-nested logit
models that account for semi-aggregate data,” Journal of Choice
Modelling, vol. 26, pp. 28–40, Mar. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1755534517300179

[3] R. S. Sutton, “Two problems with backpropagation and other steepest-
descent learning procedures for networks,” Proceedings of Eightth
Annual Conference of the Cognitive Science Society, 1986, 1986.
[Online]. Available: https://ci.nii.ac.jp/naid/10022346408

[4] N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural Networks, vol. 12, no. 1, pp. 145–151, Jan.
1999. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0893608098001166

[5] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011. [Online].
Available: http://jmlr.org/papers/v12/duchi11a.html

[6] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv:1609.04747 [cs], Sep. 2016, arXiv: 1609.04747. [Online].
Available: http://arxiv.org/abs/1609.04747

[7] T. Dozat, “Incorporating Nesterov Momentum into Adam,”
Feb. 2016. [Online]. Available: https://openreview.net/forum?id=
OM0jvwB8jIp57ZJjtNEZ

[8] S. J. Reddi, S. Kale, and S. Kumar, “On the Convergence
of Adam and Beyond,” Feb. 2018. [Online]. Available: https:
//openreview.net/forum?id=ryQu7f-RZ

[9] A. Mokhtari and A. Ribeiro, “RES: Regularized Stochastic BFGS
Algorithm,” IEEE Transactions on Signal Processing, vol. 62, no. 23,
pp. 6089–6104, Dec. 2014.

[10] R. M. Gower, F. Hanzely, P. Richtrik, and S. Stich, “Accelerated
Stochastic Matrix Inversion: General Theory and Speeding up
BFGS Rules for Faster Second-Order Optimization,” arXiv:1802.04079
[cs, math], Feb. 2018, arXiv: 1802.04079. [Online]. Available:
http://arxiv.org/abs/1802.04079

[11] N. S. Keskar and A. S. Berahas, “adaQN: An Adaptive Quasi-
Newton Algorithm for Training RNNs,” in Machine Learning and
Knowledge Discovery in Databases, ser. Lecture Notes in Computer
Science. Springer, Cham, Sep. 2016, pp. 1–16. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-46128-1 1

[12] H. Ye and Z. Zhang, “Nestrov’s Acceleration For Second Order
Method,” arXiv:1705.07171 [cs], May 2017, arXiv: 1705.07171.
[Online]. Available: http://arxiv.org/abs/1705.07171

[13] R. Byrd, G. Chin, W. Neveitt, and J. Nocedal, “On the Use of Stochastic
Hessian Information in Optimization Methods for Machine Learning,”
SIAM Journal on Optimization, vol. 21, no. 3, pp. 977–995, Jul. 2011.
[Online]. Available: https://epubs.siam.org/doi/abs/10.1137/10079923X

[14] R. Kiros, “Training Neural Networks with Stochastic Hessian-Free
Optimization,” arXiv:1301.3641 [cs, stat], Jan. 2013, arXiv: 1301.3641.
[Online]. Available: http://arxiv.org/abs/1301.3641

[15] A. Bordes, L. Bottou, and P. Gallinari, “SGD-QN: Careful Quasi-
Newton Stochastic Gradient Descent,” J. Mach. Learn. Res., vol. 10, pp.
1737–1754, Dec. 2009. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1577069.1755842

[16] A. Bordes, L. Bottou, P. Gallinari, J. Chang, and S. A. Smith, “Erratum:
SGDQN is Less Careful than Expected,” Journal of Machine Learning
Research, vol. 11, no. Aug, pp. 2229–2240, 2010. [Online]. Available:
http://www.jmlr.org/papers/v11/bordes10a.html

[17] N. Agarwal, B. Bullins, and E. Hazan, “Second-Order Stochastic
Optimization for Machine Learning in Linear Time,” arXiv:1602.03943
[cs, stat], Feb. 2016, arXiv: 1602.03943. [Online]. Available:
http://arxiv.org/abs/1602.03943

[18] L. Armijo, “Minimization of functions having Lipschitz continuous
first partial derivatives,” Pacific Journal of Mathematics, vol. 16, no. 1,
pp. 1–3, Jan. 1966. [Online]. Available: https://msp.org/pjm/1966/16-1/
p01.xhtml

[19] M. Bierlaire, K. Axhausen, and G. Abay, “The acceptance of
modal innovation: The case of Swissmetro,” Swiss Transport
Research Conference 2001, Mar. 2001. [Online]. Available: https:
//infoscience.epfl.ch/record/117140

[20] R. Fletcher, Practical Methods of Optimization; (2Nd Ed.). New York,
NY, USA: Wiley-Interscience, 1987.

[21] J. Caswell, “A treatise of algebra, both historical and practical,” Tech.
Rep., 1685.

[22] M. Schmidt, N. L. Roux, and F. Bach, “Minimizing Finite
Sums with the Stochastic Average Gradient,” arXiv:1309.2388 [cs,
math, stat], Sep. 2013, arXiv: 1309.2388. [Online]. Available:
http://arxiv.org/abs/1309.2388

https://infoscience.epfl.ch/record/117133
http://www.sciencedirect.com/science/article/pii/S1755534517300179
https://ci.nii.ac.jp/naid/10022346408
http://www.sciencedirect.com/science/article/pii/S0893608098001166
http://www.sciencedirect.com/science/article/pii/S0893608098001166
http://jmlr.org/papers/v12/duchi11a.html
http://arxiv.org/abs/1609.04747
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
http://arxiv.org/abs/1802.04079
https://link.springer.com/chapter/10.1007/978-3-319-46128-1_1
http://arxiv.org/abs/1705.07171
https://epubs.siam.org/doi/abs/10.1137/10079923X
http://arxiv.org/abs/1301.3641
http://dl.acm.org/citation.cfm?id=1577069.1755842
http://dl.acm.org/citation.cfm?id=1577069.1755842
http://www.jmlr.org/papers/v11/bordes10a.html
http://arxiv.org/abs/1602.03943
https://msp.org/pjm/1966/16-1/p01.xhtml
https://msp.org/pjm/1966/16-1/p01.xhtml
https://infoscience.epfl.ch/record/117140
https://infoscience.epfl.ch/record/117140
http://arxiv.org/abs/1309.2388

	Introduction
	Related Work
	Stochastic Newton Method (SNM)
	Case Study
	Benchmark algorithms

	Results
	Raw data vs Normalized data
	Comparison of the algorithms
	Effect of the batch size

	Conclusion
	Acknowledgements
	References

